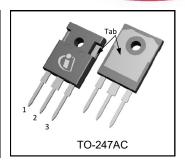

IRFP3415PbF



V _{(BR)DSS}	150V
R _{DS(on)} max.	0.042Ω
I _D	43A

Features

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

G	D	S
Gate	Drain	Source

Description

Fifth Generation HEXFET Power MOSFETs utilizes advanced processing techniques to achieve extremely low onresistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of other applications.

The TO-247AC package is preferred for commercial-industrial applications where higher power levels preclude th use of TO-220 devices. The TO-247AC is similar but superior to the earlier TO-218 package because of its isolated mounting hole.

Base part number	Package Type	Standard Pack		Orderable Part Number
Base part number	r ackage rype	Form Quantity		Orderable Fart Namber
IRFP3415PbF	TO-247AC	Tube	25	IRFP3415PbF

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	43	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	30	Α
I _{DM}	Pulsed Drain Current ①	150	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS} Single Pulse Avalanche Energy ②		590	mJ
I _{AR} Avalanche Current ①		22	Α
E _{AR} Repetitive Avalanche Energy ①		20	mJ
dv/dt	Peak Diode Recovery dv/dt③	5.0	V/ns
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
_	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case		0.75	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient		40	

Static @ T_J = 25°C (unless otherwise specified)

	Parameter		Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	150			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.17		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.042	Ω	V _{GS} = 10V, I _D = 22A ④
$V_{GS(th)}$	Gate Threshold Voltage			4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Trans conductance	19			S	$V_{DS} = 50V, I_{D} = 22A$
I	Drain-to-Source Leakage Current			25		$V_{DS} = 150V, V_{GS} = 0V$
Drain-to-Source Leakage Current	Diali-to-Source Leakage Current			250	μΛ	$V_{DS} = 120V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
	Gate-to-Source Forward Leakage			100	۵,	$V_{GS} = 20V$
IGSS	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Q_g	Total Gate Charge	 	200		I _D = 22A
Q_{gs}	Gate-to-Source Charge	 	17	nC	V _{DS} = 120V
Q_{gd}	Gate-to-Drain Charge	 	98		V _{GS} = 10V, See Fig.6 and 13 ④
$t_{d(on)}$	Turn-On Delay Time	 12			$V_{DD} = 75V$
t _r	Rise Time	 55		no	I _D = 22A
$t_{d(off)}$	Turn-Off Delay Time	 71		ns	$R_G = 2.5\Omega$
t_f	Fall Time	 69			R _D = 3.3Ω , See Fig.10⊕
L_D	Internal Drain Inductance	 5.0			Between lead, 6mm (0.25in.)
Ls	Internal Source Inductance	 13			from package and center of die contact
C _{iss}	Input Capacitance	 2400			$V_{GS} = 0V$
C _{oss}	Output Capacitance	 640		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance	 340			f = 1.0MHz, See Fig.5

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			43	١.	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			150	1	integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 22A, V_{GS} = 0V $ ④
t _{rr}	Reverse Recovery Time		260	390	ns	$T_J = 25^{\circ}C$, $I_F = 22A$
Q_{rr}	Reverse Recovery Charge		2.2	3.3	μC	di/dt = 100A/µs ④

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- $^{\circ}$ V_{DD} = 25V, T_J = 25°C, L = 2.4mH, R_G = 25 Ω , I_{AS} = 22A.(See fig. 12).
- $\label{eq:loss_state} \mbox{ } \mbox$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

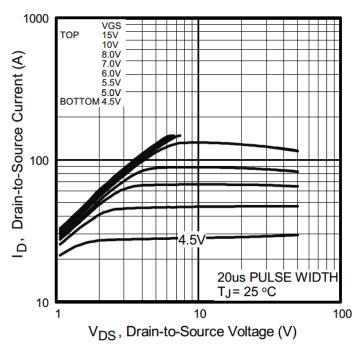


Fig. 1 Typical Output Characteristics

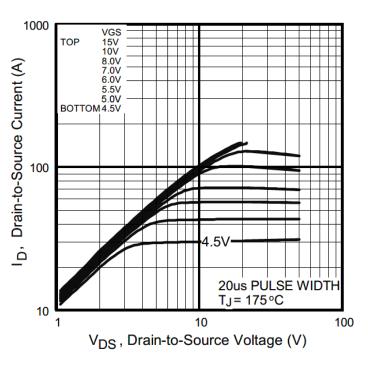


Fig. 2 Typical Output Characteristics

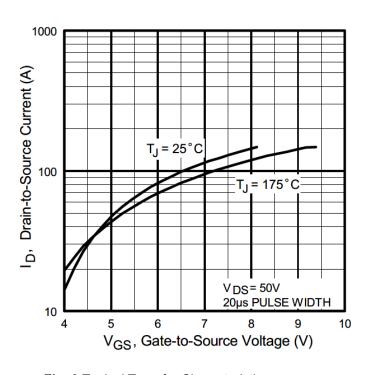


Fig. 3 Typical Transfer Characteristics

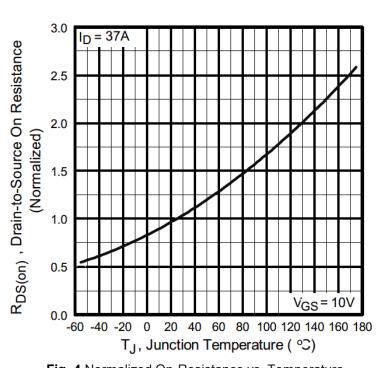
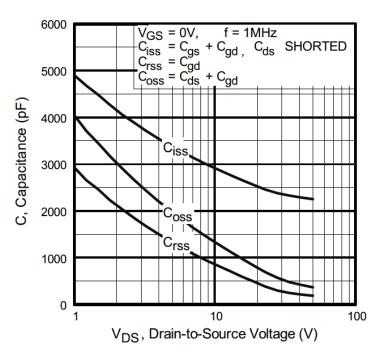
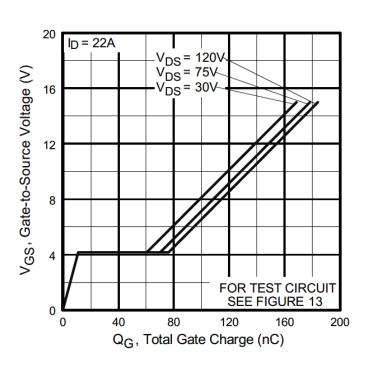




Fig. 4 Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

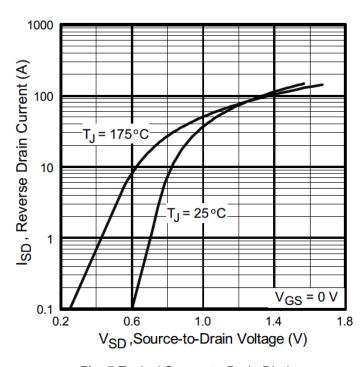


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

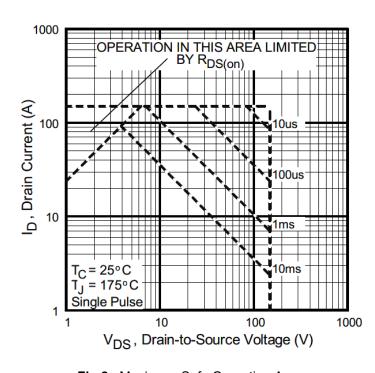
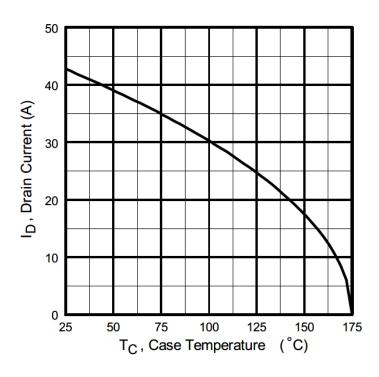



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

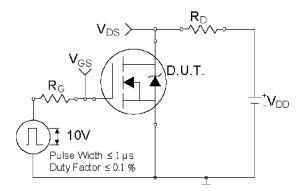


Fig 10a. Switching Time Test Circuit

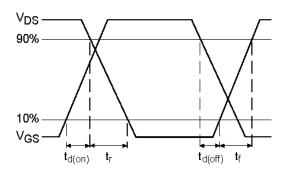


Fig 10a. Switching Time Waveforms

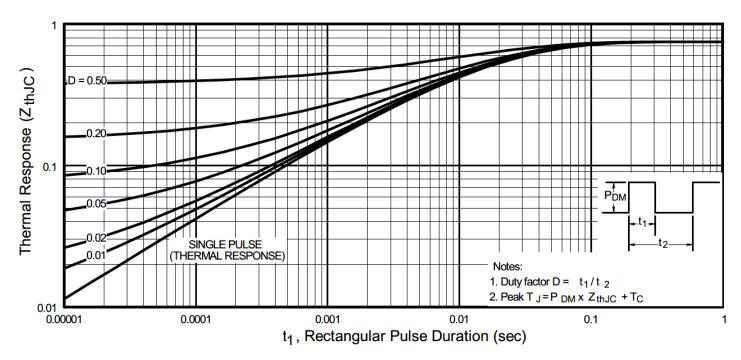


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

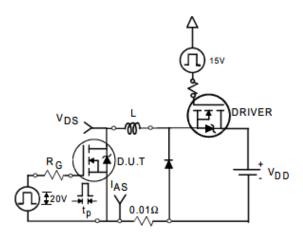


Fig. 12a. Unclamped Inductive Test Circuit

Fig. 12b. Unclamped Inductive Waveforms

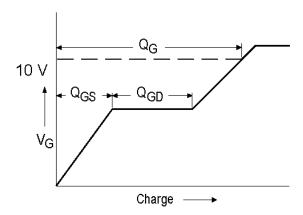
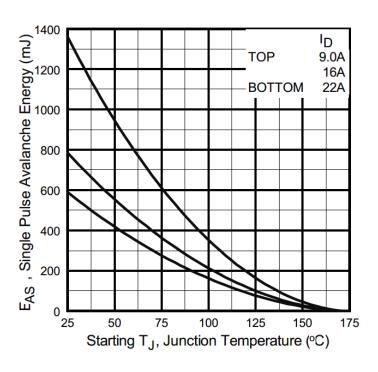



Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy vs. Drain Current

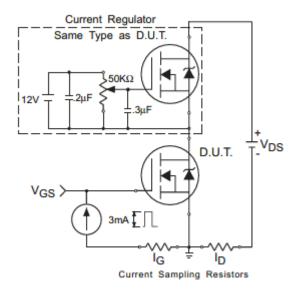
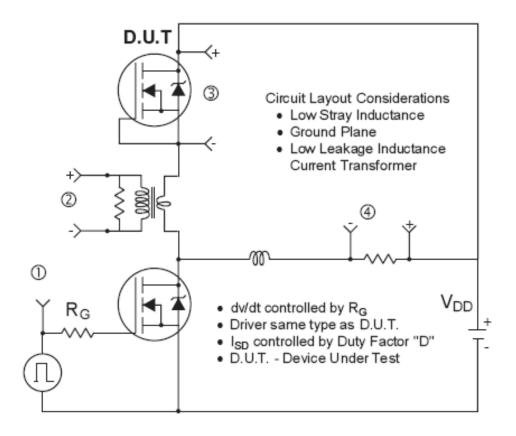



Fig 13b. Gate Charge Test Circuit

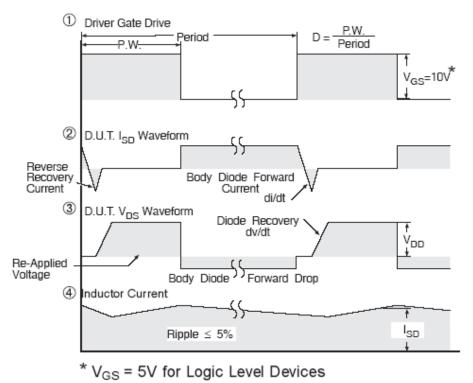
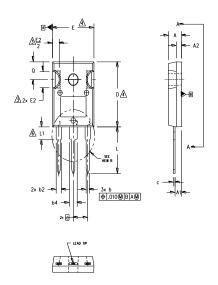
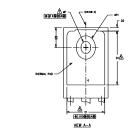




Fig 14. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

infineon

TO-247AC Package Outline (Dimensions are

NOTES:

DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.

DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

LEAD FINISH UNCONTROLLED IN L1.

OP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 * TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

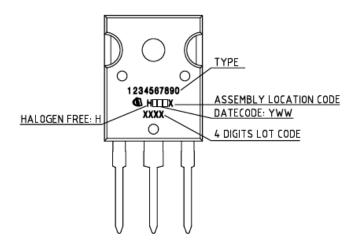
OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC.

	DIMENSIONS				
SYMBOL	INC	HES	MILLIM	ETERS	
	MIN. MAX.		MIN.	MAX.	NOTES
A	.183	.209	4.65	5.31	
A1	.087	.102	2.21	2.59	
A2	.059	.098	1.50	2.49	
b	.039	.055	0.99	1.40	
ь1	.039	.053	0.99	1.35	
b2	.065	.094	1.65	2.39	
b3	.065	.092	1.65	2.34	
b4	.102	.135	2.59	3.43	
b5	.102	.133	2.59	3.38	
С	.015	.035	0.38	0.89	
c1	.015	.033	0.38	0.84	
D	.776	.815	19.71	20.70	4
D1	.515	-	13.08	-	5
D2	.020	.053	0.51	1.35	
E	.602	.625	15.29	15.87	4
E1	.530	-	13.46	-	
E2	.178	.216	4.52	5.49	
е	.215	BSC	5.46 BSC		
Øk	.0	10	0.	25	
L	.559	.634	14.20	16.10	
L1	.146	.169	3.71	4.29	
øΡ	.140	.144	3.56	3.66	
øP1	-	.291	-	7.39	
Q	.209	.224	5.31	5.69	
S	.217	BSC	5.51	BSC	

LEAD ASSIGNMENTS

<u>HEXFET</u>

- 1.- GATE
- 2.- DRAIN 3.- SOURCE
- 4.- DRAIN


IGBTs, CoPACK

- 1.- GATE
- 2.- COLLECTOR 3.- EMITTER
- 4.- COLLECTOR

DIODES

- 1.- ANODE/OPEN
- 2.- CATHODE
- 3.- ANODE

TO-247AC Part Marking Information

TO-247AC package is not recommended for Surface Mount Application.

Revision History

Date	Rev.	Comments		
2024-10-03	2.1	 Update datasheet to Infineon format Updated Part marking –page 8 		
		Added disclaimer on last page.		

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2024 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics

("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

The Infineon Technologies component described in this Data Sheet may be used in life support devices or systems and or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.